
Answering (Unions of) Join
Queries using Random Access

and Random-Order Enumeration
Nofar Carmeli

Joint work with Christoph Berkholz, Benny Kimelfeld,
Nicole Schweikardt, and Shai Zeevi

Tasks & Motivation
Conjunctive Queries
Unions of Conjunctive Queries

2

Why Random Permutation?

3

Database

Query

+

Enumeration:

Downside: intermediate results not representative

Sampling:

Downside: repeating answers

Random Permutation:

very large
Each answer once, uniformly random order

Idea: Separate the Task

• Find the number N of answers

• Find a random permutation of 1,…,N

• Random access to answers

4

6

1 5 3 2 6 4

Random Access
• Simulates precomputed results stored in an array
• Given i, returns the ith answer or “out of bound”
• No constraints on the ordering used

5

RA4

RA1

RA7 out of bound

Consider 3 Tasks

6

Enumeration:

Random Permutation:

Random Access: 4

Database

Query

+

Complexity of Query Evaluation

7

• Treat every query as a problem
• Consider time complexity
• Data complexity
• Input: DB instance
• Query size: constant

• RAM model [Grandjean1996]
• Lookup table: construction in linear time

search in constant time

When can we solve the tasks efficiently?
(linear preprocessing + polylog per answer)

Consider 3 Tasks

8

Enumeration:

Random Permutation:

Random Access: 4

Database

Query

+

⇑

⇑

• Find the number N of answers

• Find a random permutation of 1,…,N

• Random access to answers

9

6

1 5 3 2 6 4

Random Access ⇒ Random Permutation

Counting via RandomAccess

• Assumption: the number of answers is bound by a polynomial
• RandomAccess returns “out of bound” if needed
• Allows checking if 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 ≥ 𝑘 in polylog time

• Binary search for 𝑎𝑛𝑠𝑤𝑒𝑟𝑠
• Requires 𝑂(log |𝑎𝑛𝑠𝑤𝑒𝑟𝑠|) calls for RandomAccess
• If 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 is polynomial, log |𝑎𝑛𝑠𝑤𝑒𝑟𝑠| = 𝑂(log 𝑖𝑛𝑝𝑢𝑡)
• This takes polylog time

10

• Find the number N of answers

• Find a random permutation of 1,…,N

• Random access to answers

11

6

1 5 3 2 6 4

Random Access ⇒ Random Permutation

Generating a Random Permutation

12

place 1,… , 𝑛 in array
for 𝑖 in 1,… , 𝑛:

choose j randomly from {𝑖, … , 𝑛}
swap 𝑖 and 𝑗

𝑖 𝑗

1 2 3 4 513
𝑖 𝑗

25
𝑖 𝑖

42
𝑖

• Use the Fisher-Yates Shuffle [Durstenfeld 1964]

next answer: chosen
uniformly from unseen answers

13

Place 1,… , 𝑛 in array
For 𝑖 in 1,… , 𝑛:

choose j randomly from {𝑖, … , 𝑛}
replace 𝑖 and 𝑗

13 5 42

place 1,… , 𝑛 in array (lazy initialization)
for 𝑖 in 1,… , 𝑛:

choose j randomly from {𝑖, … , 𝑛}
swap 𝑖 and 𝑗
print 𝑎[𝑖]

Constant delay variant:

• Use the Fisher-Yates Shuffle [Durstenfeld 1964]
Generating a Random Permutation

Consider 3 Tasks

14

Enumeration:

Random Permutation:

Random Access: 4

Database

Query

+

Queries

Enumeration

RandomPermutation

RandomAccess

Tasks & Motivation

Conjunctive Queries
Unions of Conjunctive Queries

15

CQs Dichotomy

16

After linear preprocessing

The lower bounds assume
no self-joins

Enumeration
𝑂 1 delay

Acyclic
Free-Connex ✓ Also efficient counting,

membership testing, etc.

Acyclic
Not Free-Connex ✘ Assuming the hardness of Boolean

matrix multiplication.

Cyclic ✘

Cannot find any answer in 𝑂 𝑛
time, assuming the hardness of
finding hypercliques.

Enumeration
𝑂 1 delay

Random Permutation
𝑂 log 𝑛 delay

Random Access
𝑂 log 𝑛

Acyclic
Free-Connex ✓ ✓ ✓ Also efficient counting,

membership testing, etc.

Acyclic
Not Free-Connex ✘ ✘ ✘ Assuming the hardness of Boolean

matrix multiplication.

Cyclic ✘ ✘ ✘

Cannot find any answer in 𝑂 𝑛
time, assuming the hardness of
finding hypercliques.

Definitions

1. a node for every atom 2. tree 3. for every variable X:
the nodes containing X form a subtree

17

𝐟𝐫𝐞𝐞 − 𝐜𝐨𝐧𝐧𝐞𝐱

4. a subtree with exactly the free variables

possibly also subsets

𝑄 𝑥, 𝑦, 𝑧 ← 𝑅! 𝑥, 𝑦 , 𝑅" 𝑦, 𝑧 , 𝑅#(𝑧, 𝑤)
𝑧, 𝑤

𝑥, 𝑦

𝑦, 𝑧

𝐚𝐜𝐲𝐜𝐥𝐢𝐜

An acyclic CQ has a graph with:
A free-connex CQ also requires:

Free-Connex CQs

Can be answered efficiently
1. Find a join tree
2. Remove dangling tuples

[Yannakakis81]
3. Ignore existential variables
4. Full Acyclic:

Do what you want

18

𝑦, 𝑧

𝑥, 𝑦

𝑧, 𝑤

x y
a1 b1
a1 b2
a2 b2

y z
b1 c1
b2 c2
b3 c3

z w
c2 d1
c2 d2
c3 d2

inside
out

𝑄 𝑥, 𝑦, 𝑧 ← 𝑅! 𝑥, 𝑦 , 𝑅" 𝑦, 𝑧 , 𝑅#(𝑧, 𝑤)

Enumeration [BaganDurandGrandjean 2007], Counting [DurandMengel 2011], Random Access [Brault-Baron 2013]

Random Access Algorithm
Preprocessing:
• Full reduction
• Bucketing
• Weighting (DP)

19

Example:
𝑄 𝑥, 𝑣, 𝑤, 𝑦, 𝑧 ← 𝑅: 𝑥, 𝑣, 𝑤 , 𝑅; 𝑣, 𝑦 , 𝑅< 𝑤, 𝑧

𝑅!(𝑥, 𝑣, 𝑤)

𝑅"(𝑣, 𝑦) 𝑅#(𝑤, 𝑧)

Random Access Algorithm
Preprocessing:
• Full reduction
• Bucketing
• Weighting (DP)

20

Example:
𝑄 𝑥, 𝑣, 𝑤, 𝑦, 𝑧 ← 𝑅: 𝑥, 𝑣, 𝑤 , 𝑅; 𝑣, 𝑦 , 𝑅< 𝑤, 𝑧

𝑅!(𝑥, 𝑣, 𝑤)

𝑅"(𝑣, 𝑦) 𝑅#(𝑤, 𝑧)

𝑹𝟏

𝑥: 𝑣: 𝑤:
𝑥: 𝑣: 𝑤;
𝑥; 𝑣; 𝑤:
𝑥; 𝑣; 𝑤;

𝑹𝟐
𝑣" 𝑦"
𝑣" 𝑦#
𝑣# 𝑦#
𝑣# 𝑦$

𝑹𝟑
𝑤: 𝑧:
𝑤: 𝑧;
𝑤: 𝑧<
𝑤; 𝑧>

𝑹𝟏
𝑥" 𝑣" 𝑤"
𝑥" 𝑣" 𝑤#
𝑥# 𝑣# 𝑤"
𝑥# 𝑣# 𝑤#
𝑥" 𝑣$ 𝑤"

𝑹𝟐

𝑣" 𝑦"
𝑣" 𝑦#
𝑣# 𝑦#
𝑣# 𝑦$

𝑹𝟑
𝑤" 𝑧"
𝑤" 𝑧#
𝑤" 𝑧$
𝑤# 𝑧'
𝑤$ 𝑧"

Random Access Algorithm
Preprocessing:
• Full reduction
• Bucketing
• Weighting (DP)

21

Example:
𝑄 𝑥, 𝑣, 𝑤, 𝑦, 𝑧 ← 𝑅: 𝑥, 𝑣, 𝑤 , 𝑅; 𝑣, 𝑦 , 𝑅< 𝑤, 𝑧

𝑅!(𝑥, 𝑣, 𝑤)

𝑅"(𝑣, 𝑦) 𝑅#(𝑤, 𝑧)

𝑣 𝑤

𝑹𝟏

𝑥: 𝑣: 𝑤:
𝑥: 𝑣: 𝑤;
𝑥; 𝑣; 𝑤:
𝑥; 𝑣; 𝑤;

𝑹𝟐
𝑣" 𝑦"
𝑣" 𝑦#
𝑣# 𝑦#
𝑣# 𝑦$

𝑹𝟑
𝑤: 𝑧:
𝑤: 𝑧;
𝑤: 𝑧<
𝑤; 𝑧>

𝑹𝟏
𝑥: 𝑣: 𝑤:
𝑥: 𝑣: 𝑤;
𝑥; 𝑣; 𝑤:
𝑥; 𝑣; 𝑤;

𝑹𝟐
𝑣: 𝑦:
𝑣: 𝑦;
𝑣; 𝑦;
𝑣; 𝑦<

𝑹𝟑
𝑤: 𝑧:
𝑤: 𝑧;
𝑤: 𝑧<
𝑤; 𝑧>

Random Access Algorithm
Preprocessing:
• Full reduction
• Bucketing
• Weighting (DP)

22

Example:
𝑄 𝑥, 𝑣, 𝑤, 𝑦, 𝑧 ← 𝑅: 𝑥, 𝑣, 𝑤 , 𝑅; 𝑣, 𝑦 , 𝑅< 𝑤, 𝑧

𝑅!(𝑥, 𝑣, 𝑤)

𝑅"(𝑣, 𝑦) 𝑅#(𝑤, 𝑧)

𝑣 𝑤

𝑹𝟏
𝑥: 𝑣: 𝑤:
𝑥: 𝑣: 𝑤;
𝑥; 𝑣; 𝑤:
𝑥; 𝑣; 𝑤;

𝑹𝟐
𝑣: 𝑦:
𝑣: 𝑦;
𝑣; 𝑦;
𝑣; 𝑦<

𝑹𝟑
𝑤: 𝑧:
𝑤: 𝑧;
𝑤: 𝑧<
𝑤; 𝑧>

𝑹𝟏 w s W

𝑥" 𝑣" 𝑤"
𝑥" 𝑣" 𝑤#
𝑥# 𝑣# 𝑤"
𝑥# 𝑣# 𝑤#

6
2
6
2

0
6
8
14

16𝑹𝟐 w s W
𝑣" 𝑦"
𝑣" 𝑦#

1
1

0
1 2

𝑣# 𝑦#
𝑣# 𝑦%

1
1

0
1 2

𝑹𝟑 w s W
𝑤" 𝑧"
𝑤" 𝑧#
𝑤" 𝑧%

1
1
1

0
1
2

3

𝑤# 𝑧' 1 0 1

w = number of answers in subtree using this tuple
s = cumulative sum of w within the bucket

Random Access Algorithm
Preprocessing:
• Full reduction
• Bucketing
• Weighting (DP)

23

Example:
𝑄 𝑥, 𝑣, 𝑤, 𝑦, 𝑧 ← 𝑅: 𝑥, 𝑣, 𝑤 , 𝑅; 𝑣, 𝑦 , 𝑅< 𝑤, 𝑧

𝑅!(𝑥, 𝑣, 𝑤)

𝑅"(𝑣, 𝑦) 𝑅#(𝑤, 𝑧)

𝑣 𝑤

𝑹𝟏
𝑥: 𝑣: 𝑤:
𝑥: 𝑣: 𝑤;
𝑥; 𝑣; 𝑤:
𝑥; 𝑣; 𝑤;

𝑹𝟐
𝑣: 𝑦:
𝑣: 𝑦;
𝑣; 𝑦;
𝑣; 𝑦<

𝑹𝟑
𝑤: 𝑧:
𝑤: 𝑧;
𝑤: 𝑧<
𝑤; 𝑧>

𝑹𝟏 w s W

𝑥" 𝑣" 𝑤"
𝑥" 𝑣" 𝑤#
𝑥# 𝑣# 𝑤"
𝑥# 𝑣# 𝑤#

6
2
6
2

0
6
8
14

16𝑹𝟐 w s W
𝑣" 𝑦"
𝑣" 𝑦#

1
1

0
1 2

𝑣# 𝑦#
𝑣# 𝑦%

1
1

0
1 2

𝑹𝟑 w s W
𝑤" 𝑧"
𝑤" 𝑧#
𝑤" 𝑧%

1
1
1

0
1
2

3

𝑤# 𝑧' 1 0 1

w = number of answers in subtree using this tuple
s = cumulative sum of w within the bucket

2×3 = 6

Random Access Algorithm
Access answer 11

24

Example:
𝑄 𝑥, 𝑣, 𝑤, 𝑦, 𝑧 ← 𝑅: 𝑥, 𝑣, 𝑤 , 𝑅; 𝑣, 𝑦 , 𝑅< 𝑤, 𝑧

𝑅!(𝑥, 𝑣, 𝑤)

𝑅"(𝑣, 𝑦) 𝑅#(𝑤, 𝑧)

𝑣 𝑤

𝑹𝟏 w s W

𝑥# 𝑣# 𝑤#
𝑥# 𝑣# 𝑤$
𝑥$ 𝑣$ 𝑤#
𝑥$ 𝑣$ 𝑤$

6
2
6
2

0
6
8
14

16

𝑹𝟐 w s W
𝑣# 𝑦#
𝑣# 𝑦$

1
1

0
1 2

𝑣$ 𝑦$
𝑣$ 𝑦&

1
1

0
1 2

𝑹𝟑 w s W
𝑤# 𝑧#
𝑤# 𝑧$
𝑤# 𝑧&

1
1
1

0
1
2

3

𝑤$ 𝑧' 1 0 1

(🌱)

8 ≤ 11 < 14

11 − 8 = 3
Access index 3 of the answers
with (𝑥! 𝑣! 𝑤") in the subtree

Split 3 like in a
multidimensional array

3 = 1×3 + 0

𝑣! bucket

𝑤" bucket

𝑠 = 1

𝑠 = 0

𝑎!! = 𝑥", 𝑣", 𝑤!, 𝑦#, 𝑧!

CQs Dichotomy

25

After linear preprocessing

The lower bounds assume
no self-joins

Enumeration
𝑂 1 delay

Random Permutation
𝑂 log 𝑛 delay

Random Access
𝑂 log 𝑛

Acyclic
Free-Connex ✓ ✓ ✓ Also efficient counting,

membership testing, etc.

Acyclic
Not Free-Connex ✘ ✘ ✘ Assuming the hardness of Boolean

matrix multiplication.

Cyclic ✘ ✘ ✘

Cannot find any answer in 𝑂 𝑛
time, assuming the hardness of
finding hypercliques.

• Find the number N of answers

• Find a random permutation of 1,…,N

• Random access to answers

26

6

1 5 3 2 6 4

Random Access ⇒ Random Permutation

In Practice

27

• Compared to a sampling algorithm
• [Zhao, Christensen, Li, Hu, and Yi SIGMOD 2018]
• Modified to reject repeated answers

• TPC-H Queries

CQs Dichotomy

28

After linear preprocessing

The lower bounds assume
no self-joins

Enumeration
𝑂 1 delay

Random Permutation
𝑂 log 𝑛 delay

Random Access
𝑂 log 𝑛

Acyclic
Free-Connex ✓ ✓ ✓ Also efficient counting,

membership testing, etc.

Acyclic
Not Free-Connex ✘ ✘ ✘ Assuming the hardness of Boolean

matrix multiplication.

Cyclic ✘ ✘ ✘

Cannot find any answer in 𝑂 𝑛
time, assuming the hardness of
finding hypercliques.

Acyclic non-free-connex CQs

𝑄 𝑥, 𝑧 ← 𝑅! 𝑥, 𝑦 , 𝑅" 𝑦, 𝑧

Assumption: Boolean matrices cannot be multiplied in time 𝑂(𝑚:IJ(:))
𝑚 = number of ones in the input and output

[BaganDurandGrandjean CSL’2007]

1 1
0 1

0 1
0 1 = ? ?

? ?

𝑹𝟏
R C

1 1

1 2

2 2

𝑹𝟐
R C

1 2

2 2

𝑸
R C

1 2

2 2

29

Acyclic non-free-connex:

0 1
0 1

Indices of ones

𝑂 𝑚 preprocessing + 𝑂 log 𝑚 delay = 𝑂 𝑚 log 𝑚 total ⟹ not possible

CQs Dichotomy

30

After linear preprocessing

The lower bounds assume
no self-joins

Enumeration
𝑂 1 delay

Random Permutation
𝑂 log 𝑛 delay

Random Access
𝑂 log 𝑛

Acyclic
Free-Connex ✓ ✓ ✓ Also efficient counting,

membership testing, etc.

Acyclic
Not Free-Connex ✘ ✘ ✘ Assuming the hardness of Boolean

matrix multiplication.

Cyclic ✘ ✘ ✘

Cannot find any answer in 𝑂 𝑛
time, assuming the hardness of
finding hypercliques.

Cyclic CQs

𝑄 𝑥, 𝑦, 𝑧 ← 𝑅! 𝑥, 𝑦 , 𝑅" 𝑦, 𝑧 , 𝑅# 𝑥, 𝑧

Assumption: 𝑘-Hypercliques cannot be found in time 𝑂 𝑚
𝑚 = number of edges of size 𝑘 − 1

1 2

1 3

1 4

2 4

𝑸
𝒙 𝒚 𝒛
1 2 4

31

Cyclic:

1 2

3 4

[Brault-Baron 2013]

1 2

3 4

1

2 3

𝑘-Hypercliques

𝑹𝟏 = 𝑹𝟐 = 𝑹𝟑

first answer in 𝑂 𝑚 time ⟹ not possible

edges

CQs Dichotomy

32

After linear preprocessing

The lower bounds assume
no self-joins

Enumeration
𝑂 1 delay

Random Permutation
𝑂 log 𝑛 delay

Random Access
𝑂 log 𝑛

Acyclic
Free-Connex ✓ ✓ ✓ Also efficient counting,

membership testing, etc.

Acyclic
Not Free-Connex ✘ ✘ ✘ Assuming the hardness of Boolean

matrix multiplication.

Cyclic ✘ ✘ ✘

Cannot find any answer in 𝑂 𝑛
time, assuming the hardness of
finding hypercliques.

CQs Dichotomy

33

Problems

Enumeration

RandomPermutation

RandomAccess

CQs

Enumeration
RandomPermutation

RandomAccess

Tasks & Motivation
Conjunctive Queries

Unions of Conjunctive Queries

34

Enumeration: Easy ∪ Easy = Easy

35

while A.has_next():
a = A.next()
if a in B:

print B.next()
else:

print a
while B.has_next():

print B.next()

prints A\B
prints B

[DurandStrozecki CSL’2011]

A\B and B are a partition of A∪B

Cases for UCQs Enumeration

36

All CQs are Easy Some CQs are Hard

𝐚𝐥𝐰𝐚𝐲𝐬 𝐞𝐚𝐬𝐲
𝐬𝐨𝐦𝐞𝐭𝐢𝐦𝐞

𝐬 𝐡𝐚𝐫𝐝

𝐬𝐨𝐦𝐞𝐭𝐢𝐦𝐞𝐬 𝐞𝐚𝐬𝐲

* Even when considering non-redundant unions

All CQs are Hard

𝐬𝐨𝐦𝐞𝐭𝐢𝐦𝐞𝐬 𝐡𝐚𝐫𝐝

𝐬𝐨𝐦𝐞
𝐭𝐢𝐦𝐞𝐬

𝐞𝐚𝐬𝐲

Some UCQs containing only hard CQs are easy!

[CarmeliKröll PODS’2019]

Access: Easy ∪ Easy = Sometimes Hard
Proof (Example):

• 𝑄! 𝑥, 𝑦, 𝑧 ← 𝑅 𝑥, 𝑦 , 𝑆 𝑦, 𝑧 free-connex
• 𝑄" 𝑥, 𝑦, 𝑧 ← 𝑆 𝑦, 𝑧 , 𝑇(𝑥, 𝑧) free-connex
• 𝑄! ∩ 𝑄" 𝑥, 𝑦, 𝑧 ← 𝑅 𝑥, 𝑦 , 𝑆 𝑦, 𝑧 , 𝑇(𝑥, 𝑧) cyclic
• Cannot count in linear time

* assumption: cannot find a triangle in a graph in linear time.

• Assume by contradiction 𝑄! ∪ 𝑄" ∈ RandomAccess
• We can count 𝑄: ∪ 𝑄; in linear time
• Computes 𝑄: ∩ 𝑄; = 𝑄: + 𝑄; − 𝑄: ∪ 𝑄;

37Contradiction!

Comparing the Tasks
• UCQs: Enumeration ⇏ RandomAccess

38

UCQs

Enumeration

RandomPermutation

RandomAccess

CQs

Enumeration
RandomPermutation

RandomAccess

Unions of Free-connex CQs
• Random access is not always possible
• What can we do?

1. Mutually Compatible UCQs
• Subclass, allows for random access in log2 time

2. Relax the delay requirements
• Random permutation algorithm with expected log delay

39

• Random permutation algorithm for a union
• Requirements from each CQ:
• Counting
• Sampling
• Testing
• Deletion

• Free-connex CQs admit:
• Counting
• Random access
• Inverted random access

40

Easy ∪ Easy: Random Permutation

4 1 3 2 5
𝑖

1 2 3 4 5

Deletion:
1. Get the answer index
2. Swap the index with i
3. i++

4 1 5 2 3
𝑖

Easy ∪ Easy: Random Permutation

41

a b c d

e f g

𝑄:

𝑄;

while ∑Y 𝑄Y > 0:

choose 𝑄Z with probability |\!|∑" \"
𝑎𝑛𝑠 = random answer of 𝑄Z
𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠 = 𝑄Y 𝑎𝑛𝑠 ∈ 𝑄Y
𝑜𝑤𝑛𝑒𝑟 = first from 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠
for 𝑄Y ∈ 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠 ∖ {𝑜𝑤𝑛𝑒𝑟}

delete 𝑎𝑛𝑠 from 𝑄Y
If 𝑜𝑤𝑛𝑒𝑟 = 𝑄Z:

delete 𝑎𝑛𝑠 from 𝑄Z
print 𝑎𝑛𝑠

Algorithm Example

If the answers are disjoint,

Every answer is selected with probability :^

Probability of d : >
>I<

:
> =

:
^

Choosing 𝑄" Choosing d

Easy ∪ Easy: Random Permutation

42

a b c d

e f b

𝑄:

𝑄;

while ∑Y 𝑄Y > 0:

choose 𝑄Z with probability |\!|∑" \"
𝑎𝑛𝑠 = random answer of 𝑄Z
𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠 = 𝑄Y 𝑎𝑛𝑠 ∈ 𝑄Y
𝑜𝑤𝑛𝑒𝑟 = first from 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠
for 𝑄Y ∈ 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠 ∖ {𝑜𝑤𝑛𝑒𝑟}

delete 𝑎𝑛𝑠 from 𝑄Y
If 𝑜𝑤𝑛𝑒𝑟 = 𝑄Z:

delete 𝑎𝑛𝑠 from 𝑄Z
print 𝑎𝑛𝑠

Algorithm Example

Every cell is selected with probability :
^

b is selected with probability ;^

Easy ∪ Easy: Random Permutation

43

a b c d

e f b

𝑄:

𝑄;

while ∑Y 𝑄Y > 0:

choose 𝑄Z with probability |\!|∑" \"
𝑎𝑛𝑠 = random answer of 𝑄Z
𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠 = 𝑄Y 𝑎𝑛𝑠 ∈ 𝑄Y
𝑜𝑤𝑛𝑒𝑟 = first from 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠
for 𝑄Y ∈ 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠 ∖ {𝑜𝑤𝑛𝑒𝑟}

delete 𝑎𝑛𝑠 from 𝑄Y
If 𝑜𝑤𝑛𝑒𝑟 = 𝑄Z:

delete 𝑎𝑛𝑠 from 𝑄Z
print 𝑎𝑛𝑠

Algorithm Example

Every cell is selected with probability :
^

b is selected with probability :^
No answer with probability :^

Easy ∪ Easy: Random Permutation

44

while ∑Y 𝑄Y > 0:

choose 𝑄Z with probability |\!|∑" \"
𝑎𝑛𝑠 = random answer of 𝑄Z
𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠 = 𝑄Y 𝑎𝑛𝑠 ∈ 𝑄Y
𝑜𝑤𝑛𝑒𝑟 = first from 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠
for 𝑄Y ∈ 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠 ∖ {𝑜𝑤𝑛𝑒𝑟}

delete 𝑎𝑛𝑠 from 𝑄Y
If 𝑜𝑤𝑛𝑒𝑟 = 𝑄Z:

delete 𝑎𝑛𝑠 from 𝑄Z
print 𝑎𝑛𝑠

Algorithm
• Constant number of operations

per iteration
• Each operation takes log time

→ Each iteration takes log time
• Every iteration prints with

probability !
#;<=>?=@

≤ 𝑃 ≤ 1
→ Expected log delay

• At most two iterations per answer
→ Amortized log delay

In Practice
• Time spent on rejections declines with time

45

In Practice
• Compares the UCQ alternatives
• Demonstrates the overhead caused by the union

46

Conclusions

• CQs:
• 3 tasks tractable ⇔ free-connex

• UCQs:
• Enumeration ⇏ RandomAccess
• mcUCQs: 3 tasks tractable
• Union of free-connex: RandomPermutation with expected log delay

• Future Work:
• Characterizing unions of free-connex CQs
• Reducing space consumption

47

Queries

Enumeration

RandomPermutation

RandomAccess

