Answering (Unions of) Join
Queries using Random Access and Random-Order Enumeration

Nofar Carmeli

Joint work with Christoph Berkholz, Benny Kimelfeld, Nicole Schweikardt, and Shai Zeevi

Tasks \& Motivation

Conjunctive Queries
Unions of Conjunctive Queries

Why Random Permutation?

Enumeration:

Downside: intermediate results not representative

Sampling:

Downside: repeating answers

Random Permutation:

Each answer once, uniformly random order
very large

Idea: Separate the Task

- Find the number N of answers

6

- Find a random permutation of $1, \ldots, \mathrm{~N}$

$$
\begin{array}{llllll}
1 & 5 & 3 & 2 & 6 & 4
\end{array}
$$

- Random access to answers

Random Access

- Simulates precomputed results stored in an array
- Given i, returns the $\mathrm{i}^{\text {th }}$ answer or "out of bound"
- No constraints on the ordering used 08 है है

Consider 3 Tasks

\square
Database
$+$
Random Permutation:

0इEs ふ \& \&
Enumeration: OAK\&

Random Access:

$4 \Rightarrow \xi$

Complexity of Query Evaluation

- Treat every query as a problem
- Consider time complexity
- Data complexity
- Input: DB instance
- Query size: constant
- RAM model [Grandjean1996]
- Lookup table: construction in linear time search in constant time

When can we solve the tasks efficiently?
(linear preprocessing + polylog per answer)

Consider 3 Tasks

Random Access \Rightarrow Random Permutation

- Find the number N of answers

6

- Find a random permutation of $1, \ldots, \mathrm{~N}$

$$
\begin{array}{llllll}
1 & 5 & 3 & 2 & 6 & 4
\end{array}
$$

- Random access to answers

Counting via RandomAccess

- Assumption: the number of answers is bound by a polynomial
- RandomAccess returns "out of bound" if needed
- Allows checking if \mid answers $\mid \geq k$ in polylog time
- Binary search for |answers|
- Requires $O(\log (|a n s w e r s|))$ calls for RandomAccess
- If \mid answers \mid is polynomial, $\log (\mid$ answers $\mid)=O(\log ($ input $))$
- This takes polylog time

Random Access \Rightarrow Random Permutation

- Find the number N of answers

6

- Find a random permutation of $1, \ldots, \mathrm{~N}$

$$
\begin{array}{llllll}
1 & 5 & 3 & 2 & 6 & 4
\end{array}
$$

- Random access to answers

Generating a Random Permutation

- Use the Fisher-Yates Shuffle [Durstenfeld 1964]

```
place 1, ...,n in array
for i in 1, .., n:
    choose j randomly from {i,\ldots,n}
    swap i and j
                    next answer: chosen
* uniformly from unseen answ
```


Generating a Random Permutation

- Use the Fisher-Yates Shuffle [Durstenfeld 1964]

Constant delay variant: place $1, \ldots, n$ in array (lazy initialization) for i in $1, \ldots, n$:
choose j randomly from $\{i, \ldots, n\}$
swap i and j print $a[i]$

3	5	1	2	4

Consider 3 Tasks

Database
$+$

Enumeration:

Random Permutation:

Random Access:

Enumeration

Tasks \& Motivation

Conjunctive Queries

Unions of Conjunctive Queries

CQs Dichotomy

After linear preprocessing

	Enumeration O (1) delay	Random Permutation $O(\log n)$ delay	Random Access $O(\log n)$	
Acyclic Free-Connex	\checkmark	\checkmark	\checkmark	Also efficient counting, membership testing, etc.
Acyclic Not Free-Connex	x	x	x	Assuming the hardness of Boolean matrix multiplication.
Cyclic	x	x	x	Cannot find any answer in $O(n)$ time, assuming the hardness of finding hypercliques.

The lower bounds assume no self-joins

Definitions

An acyclic CQ has a graph with:
A free-connex CQ also requires:

1. a node for every atom possibly also subsets
2. tree
3. for every variable X :
the nodes containing X form a subtree

4. a subtree with exactly the free variables

Free-Connex CQs

$$
Q(x, y, z) \leftarrow R_{1}(x, y), R_{2}(y, z), R_{3}(z, w)
$$

Can be answered efficiently

1. Find a join tree
2. Remove dangling tuples [Yannakakis81]
3. Ignore existential variables
4. Full Acyclic: Do what you want

Random Access Algorithm

Preprocessing:

- Full reduction
- Bucketing
$\begin{array}{ll} & R_{2}(v, y) \quad R_{3}(w, z) \\ \text { Example: } \\ Q(x, v, w, y, z) \leftarrow R_{1}(x, v, w), R_{2}(v, y), R_{3}(w, z)\end{array}$

Random Access Algorithm

Preprocessing:

- Full reduction
- Bucketing
- Weighting (DP)

Example:

$$
Q(x, v, w, y, z) \leftarrow R_{1}(x, v, w), R_{2}(v, y), R_{3}(w, z)
$$

	R_{1}		R_{3}	
R_{2}	x_{1}	v_{1}	w_{1}	w_{3}
v_{1}	y_{1}	x_{1}	v_{1}	w_{2}
v_{1}	y_{2}	x_{2}	v_{2}	z_{1}
v_{2}	y_{2}	x_{2}	v_{2}	w_{2}
v_{2}	z_{2}			
y_{3}	x_{1}	v_{3}	w_{1}	z_{3}
			$w_{2} z_{4}$	
			$w_{3} z_{1}$	

Random Access Algorithm

Preprocessing:

- Full reduction
- Bucketing
- Weighting (DP)

Example:

$$
Q(x, v, w, y, z) \leftarrow R_{1}(x, v, w), R_{2}(v, y), R_{3}(w, z)
$$

	R_{1}	R_{3}
\boldsymbol{R}_{2}	$x_{1} v_{1} w_{1}$	$w_{1} z_{1}$
$v_{1} y_{1}$	$x_{1} v_{1} w_{2}$	$w_{1} z_{2}$
$v_{1} y_{2}$	$x_{2} v_{2} w_{1}$	$w_{1} z_{3}$
$v_{2} y_{2}$	$x_{2} v_{2} w_{2}$	$w_{2} z_{4}$
$v_{2} y_{3}$		

\[

\]

Random Access Algorithm

Preprocessing:

- Full reduction
- Bucketing

Example:

- Weighting (DP)

$$
Q(x, v, w, y, z) \leftarrow R_{1}(x, v, w), R_{2}(v, y), R_{3}(w, z)
$$

$\mathrm{w}=$ number of answers in subtree using this tuple
$s=$ cumulative sum of w within the bucket

Random Access Algorithm

Preprocessing:

- Full reduction
- Bucketing

Example:

- Weighting (DP)

$$
Q(x, v, w, y, z) \leftarrow R_{1}(x, v, w), R_{2}(v, y), R_{3}(w, z)
$$

$\mathrm{w}=$ number of answers in subtree using this tuple
$s=$ cumulative sum of w within the bucket

	\boldsymbol{R}_{1}	\boldsymbol{R}_{3}
\boldsymbol{R}_{2}	x_{1}	v_{1}
v_{1}	w_{1}	$w_{1} z_{1}$
$v_{1} y_{1}$	x_{1}	v_{1}
w_{2}		
$v_{1} y_{2}$	x_{2}	v_{2}
w_{1}	$w_{1} z_{2}$	
$v_{2} y_{2}$	x_{2}	v_{2}
v_{2}	$w_{1} z_{3}$	
	y_{3}	

Random Access Algorithm

Access answer 11

$$
11-8=3
$$

Access index 3 of the answers with ($x_{2} v_{2} w_{1}$) in the subtree

Example:

$$
Q(x, v, w, y, z) \leftarrow R_{1}(x, v, w), R_{2}(v, y), R_{3}(w, z)
$$

Split 3 like in a
 multidimensional array

$$
3=1 \times 3+0
$$

$$
\begin{gathered}
\begin{array}{c}
v_{2} \text { bucket } \\
s=1
\end{array}
\end{gathered}\left\{\begin{array}{lll|l|l|l|l|}
v_{1} y_{1} & 1 & 0 & 2 & w_{1} z_{1} & 1 & 0 \\
v_{1} y_{2} & 1 & 1 & 2 & w_{1} z_{2} & 1 & 1 \\
v_{1} & 3
\end{array}\right\} \begin{gathered}
w_{1} \text { bucket } \\
s=0 \\
v_{2} y_{2} \\
\hline
\end{gathered} 1_{2}
$$

$$
a_{11}=\left(x_{2}, v_{2}, w_{1}, y_{3}, z_{1}\right)
$$

CQs Dichotomy

After linear preprocessing

	Enumeration O (1) delay	Random Permutation $O(\log n)$ delay	Random Access $O(\log n)$	
Acyclic Free-Connex	\checkmark	\checkmark	\checkmark	Also efficient counting, membership testing, etc.
Acyclic Not Free-Connex	x	x	x	Assuming the hardness of Boolean matrix multiplication.
Cyclic	x	x	x	Cannot find any answer in $O(n)$ time, assuming the hardness of finding hypercliques.

The lower bounds assume no self-joins

Random Access \Rightarrow Random Permutation

- Find the number N of answers

6

- Find a random permutation of $1, \ldots, \mathrm{~N}$

$$
\begin{array}{llllll}
1 & 5 & 3 & 2 & 6 & 4
\end{array}
$$

- Random access to answers

In Practice

- Compared to a sampling algorithm

- [Zhao, Christensen, Li, Hu, and Yi SIGMOD 2018]
- Modified to reject repeated answers

REnum(CQ) preprocessing
-REnum(CQ) enumeration
$\square_{\text {Sample(EW) }}$ preprocessing
$\boxtimes_{\text {SAMPLE }}(E W)$ enumeration

CQs Dichotomy

After linear preprocessing

	Enumeration O (1) delay	Random Permutation $O(\log n)$ delay	Random Access $O(\log n)$	
Acyclic Free-Connex	\checkmark	\checkmark	\checkmark	Also efficient counting, membership testing, etc.
Acyclic Not Free-Connex	x	x	x	Assuming the hardness of Boolean matrix multiplication.
Cyclic	x	x	x	Cannot find any answer in $O(n)$ time, assuming the hardness of finding hypercliques.

The lower bounds assume no self-joins

Acyclic non-free-connex CQs [BaganDurandGrandjean CSL'2007]

Assumption: Boolean matrices cannot be multiplied in time $O\left(m^{1+o(1)}\right)$ $m=$ number of ones in the input and output

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{lr}
0 & 1 \\
0 & 1
\end{array}\right)
$$

Indices of ones

Acyclic non-free-connex: $Q(x, z) \leftarrow R_{1}(x, y), R_{2}(y, z)$

CQs Dichotomy

After linear preprocessing

	Enumeration O (1) delay	Random Permutation $O(\log n)$ delay	Random Access $O(\log n)$	
Acyclic Free-Connex	\checkmark	\checkmark	\checkmark	Also efficient counting, membership testing, etc.
Acyclic Not Free-Connex	x	x	x	Assuming the hardness of Boolean matrix multiplication.
Cyclic	x	x	x	Cannot find any answer in $O(n)$ time, assuming the hardness of finding hypercliques.

The lower bounds assume no self-joins

Cyclic CQs

Assumption: k-Hypercliques cannot be found in time $O(m)$ $m=$ number of edges of size $k-1$

Cyclic: $\quad Q(x, y, z) \leftarrow R_{1}(x, y), R_{2}(y, z), R_{3}(x, z)$

CQs Dichotomy

After linear preprocessing

	Enumeration O (1) delay	Random Permutation $O(\log n)$ delay	Random Access $O(\log n)$	
Acyclic Free-Connex	\checkmark	\checkmark	\checkmark	Also efficient counting, membership testing, etc.
Acyclic Not Free-Connex	x	x	x	Assuming the hardness of Boolean matrix multiplication.
Cyclic	x	x	x	Cannot find any answer in $O(n)$ time, assuming the hardness of finding hypercliques.

The lower bounds assume no self-joins

CQs Dichotomy

Tasks \& Motivation
Conjunctive Queries

Unions of Conjunctive Queries

Enumeration: Easy u Easy = Easy

$A \backslash B$ and B are a partition of $A \cup B$

Cases for UCQs Enumeration

Some UCQs containing only hard CQs are easy!

Access: Easy U Easy = Sometimes Hard

Proof (Example):

- $Q_{1}(x, y, z) \leftarrow R(x, y), S(y, z)$ free-connex
- $Q_{2}(x, y, z) \leftarrow S(y, z), T(x, z)$ free-connex
- $Q_{1} \cap Q_{2}(x, y, z) \leftarrow R(x, y), S(y, z), T(x, z)$ cyclic
- Cannot count in linear time

* assumption: cannot find a triangle in a graph in linear time.

- Assume by contradiction $Q_{1} \cup Q_{2} \in$ RandomAccess
- We can count $\left|Q_{1} \cup Q_{2}\right|$ in linear time
- Computes $\left|Q_{1} \cap Q_{2}\right|=\left|Q_{1}\right|+\left|Q_{2}\right|-\left|Q_{1} \cup Q_{2}\right|$

Comparing the Tasks

- UCQs: Enumeration \nRightarrow RandomAccess

Unions of Free-connex CQs

- Random access is not always possible
-What can we do?

1. Mutually Compatible UCQs

- Subclass, allows for random access in $\log ^{2}$ time

2. Relax the delay requirements

- Random permutation algorithm with expected log delay

Easy u Easy: Random Permutation

- Random permutation algorithm for a union
- Requirements from each CQ:
- Counting
- Sampling
- Testing
- Deletion
- Free-connex CQs admit:
- Counting
- Random access
- Inverted random access

Deletion:

1. Get the answer index
2. Swap the index with i
3. i++

Easy U Easy: Random Permutation

Algorithm

while $\sum_{j}\left|Q_{j}\right|>0$:
choose Q_{i} with probability $\frac{\left|Q_{i}\right|}{\Sigma_{j}\left|Q_{j}\right|}$
ans $=$ random answer of Q_{i}

We don't need this part

delete ans from Q_{i} print ans

Example

If the answers are disjoint,

Probability of $\mathrm{d}: \underbrace{\frac{4}{4+3}} \frac{1}{4}=\frac{1}{7}$
Choosing Q_{1} Choosing d
Every answer is selected with probability $\frac{1}{7}$

Easy u Easy: Random Permutation

Algorithm
while $\sum_{j}\left|Q_{j}\right|>0$:
choose Q_{i} with probability $\frac{\left|Q_{i}\right|}{\Sigma_{j}\left|Q_{j}\right|}$
ans $=$ random answer of Q_{i}

We don't need this part

delete ans from Q_{i} print ans

Example

Every cell is selected with probability $\frac{1}{7}$ b is selected with probability $\frac{2}{7}$

Easy u Easy: Random Permutation

Algorithm

 while $\sum_{j}\left|Q_{j}\right|>0$:choose Q_{i} with probability $\frac{\left|Q_{i}\right|}{\Sigma_{j}\left|Q_{j}\right|}$
ans $=$ random answer of Q_{i}
providers $=\left\{Q_{j} \mid\right.$ ans $\left.\in Q_{j}\right\}$
owner $=$ first from providers
for $Q_{j} \in$ providers $\backslash\{$ owner $\}$ delete ans from Q_{j}
If owner $=Q_{i}$:
delete ans from Q_{i} print ans

Example

Every cell is selected with probability $\frac{1}{7}$ b is selected with probability $\frac{1}{7}$
No answer with probability $\frac{1}{7}$

Easy u Easy: Random Permutation

Algorithm

while $\sum_{j}\left|Q_{j}\right|>0$:
choose Q_{i} with probability $\frac{\left|Q_{i}\right|}{\Sigma_{j}\left|Q_{j}\right|}$
ans $=$ random answer of Q_{i}
providers $=\left\{Q_{j} \mid\right.$ ans $\left.\in Q_{j}\right\}$
owner $=$ first from providers
for $Q_{j} \in$ providers $\backslash\{$ owner $\}$
delete ans from Q_{j}
If owner $=Q_{i}$:
delete ans from Q_{i}
print ans

- Constant number of operations per iteration
- Each operation takes log time \rightarrow Each iteration takes log time
- Every iteration prints with probability $\frac{1}{\text { \#Queries }} \leq P \leq 1$
\rightarrow Expected log delay
- At most two iterations per answer
\rightarrow Amortized log delay

In Practice

- Time spent on rejections declines with time

In Practice

- Compares the UCQ alternatives
- Demonstrates the overhead caused by the union

Conclusions

- CQs:
- 3 tasks tractable \Leftrightarrow free-connex
- UCQs:
- Enumeration \nRightarrow RandomAccess
- mcUCQs: 3 tasks tractable

- Union of free-connex: RandomPermutation with expected log delay
- Future Work:
- Characterizing unions of free-connex CQs
- Reducing space consumption

